混合稀土 La、Ce 对铸造高锰钢 组织及夹杂物变性的影响

石 帅^{1, 2},赵燕青^{1, 2},高云哲^{1, 2},王娇娇^{1, 2},武晓龙^{1, 2}, 弓俊杰^{1, 2},赵林林^{1, 2},郭瑞华^{1, 2},赵 楠^{1, 2}

(1.河钢材料技术研究院,河北石家庄 050023; 2.河北河钢材料技术研究院有限公司,河北石家庄 050023)

摘要: 采用微量稀土La-Ce微合金化对高锰铸钢进行变质处理,借助金相显微镜、扫描电镜、 能谱仪、冲击试验机、显微硬度计等检测手段,研究了La-Ce混合稀土对铸造高锰钢显微组 织、夹杂物和力学性能影响。结果表明:微量的稀土La-Ce使高锰钢铸态组织柱状晶区缩短, 等轴晶区扩大,二次枝晶间距减小,晶界碳化物细化;同时钢中夹杂物变性,由原来多边形 的TiN、Al₂O₃与MnS复合夹杂转变为椭球状或球状的含稀土复合夹杂。稀土La-Ce改善了铸 态高锰钢的冲击韧性及显微硬度,在0 ℃、-20 ℃、-40 ℃试验温度下横向冲击功分别提升 32.3%、67.5%,170.0%,低温韧性提升更加显著;显微硬度HV10由221提升至238。 关键词:高锰钢;稀土;夹杂物;冲击功

近年来耐磨材料发展迅速,各种新型耐磨材料层出不穷,高锰钢作为一种韧性 与加工硬化性能优异的耐磨钢,广泛应用于冶金、建筑、煤炭工业等高应力冲击载 荷磨料磨损工况条件下的部件,目前为止,尚无一种材料可以完全替代高锰钢^[1-3]。高 Gamma的上午,我们就要求了你的问题,我们就是你的你的问题。" Gamma也不能说道:"你们就是你的你们,你们就是你的你们,你们就是你的你们。" Gamma也不是一个,我们就是你的你们,你们就是你的你们。 Gamma也不是你的问题。 Gamma也不是你的话题。 Gamma 而硫和锰的亲和力较强,因此在高锰钢中极易形成粗大的MnS夹杂物,由于其热膨 胀系数、弹性模量与钢基体不同,在冷热循环服役的环境下容易产生应力集中,导 致高锰钢铸件在使用过程中产生剥落、裂纹等缺陷,同时高锰钢铸件晶粒容易粗 大,极易导致元素在枝晶间偏析,从而降低其韧性和耐磨性,降低其服役寿命。因 此,提升高锰钢使用寿命的重要途径是改质夹杂物和细化铸态组织[4-6]。稀土具有 较活泼的化学性质,电子层结构独特,对于高锰钢具有净化钢液、抑制碳化长大、 细化晶粒、减少晶间夹杂物的数量等作用^[7-9]。利用其变质作用可以消除粗大且不 均匀铸态组织在铸-轧界面的遗传性,优化钢坯热加工、从而成为提升轧材性能的 重要手段^[8]。霍文霞利用Si-Fe-RE细化了高锰钢铸态组织,有效改善夹杂物形态与 分布^[10]。本文通过在高锰钢中添加微量的La和Ce对其铸锭件进行微合金化处理, 研究La和Ce对高锰钢铸锭组织形貌、夹杂物的形成与分布的影响,为获得高性能 的高锰钢提供一种技术途径。

1 试验材料及方法

试验高锰钢采用50 kg真空感应炉冶炼,共冶炼2炉,冶炼完成后浇注成截面尺 寸为150 mm×150 mm的钢锭,试验钢锭化学成分如表1所示。首先将纯铁棒、硅 (99.5%,质量分数,下同)、铬铁(56.9%Cr和43.1%Fe)、海绵钛(99.8%)和 硼铁(16.4%B和83.5%Fe)放入氧化铝坩埚中加热熔化,熔化后在1580℃保 温5 min使之成分均匀化,之后加入金属锰(99.7%),待完全熔化后1560℃保 温10 min,最后加入铝稀土中间合金,5 min后浇注到铸铁模具中。将冶炼得到的

作者简介: 石帅(1992-),男,工程 师,从事钢铁能源材料开 发与应用工作。E-mail: 18232538992@163.com 通讯作者: 赵燕青,男,高级工程师。 E-mail: zyqzyq200@126. com

中图分类号:TG142 文献标识码:A 文章编号:1001-4977(2024) 05-0653-07

收稿日期: 2023-07-24 收到初稿, 2023-09-25 收到修订稿。

Vol.73 No.5 2024

654 **持**造 FOUNDRY 铸钢 · 铸铁

表1 试验钢的检测成分 Table 1 Chemical compositions of the tested steels										w _B /%		
钢样	С	Si	Mn	Р	S	Cr	Ti	В	Al	La	Ce	
 1号	1.05	0.3	14.0	0.007 4	0.004 9	0.4	0.017	0.002 4	0.42	-	-	
2号	1.06	0.3	13.8	0.008 2	0.000 4	0.4	0.016	0.002 5	0.39	0.009 5	0.037	

钢锭在距离底部20 cm处切开,如图1a所示,共 取5个10 mm×10 mm×10 mm的正方体试样,试样 经过研磨和抛光后在金相显微镜下观察组织形貌和 夹杂物。

(a)铸锭取样位置
 (b)金相取样位置
 图1 铸锭及金相取样位置图
 Fig. 1 Location of ingot and metallographic sampling

2 试验结果与讨论

2.1 合金的组织

从图2及图3金相组织可以看出,2种试验钢均为奥 氏体组织,在组织中存在较明显的粗大柱状树枝晶, 提高对比奥氏体的晶粒度评级,其评级结果为0~1级。 由于高锰钢的热导率较低并且在铸造过程中冷速较 快,铸锭的不同部位冷速差异较大,因此促进了粗晶 粒及树枝晶的形成。从图3及图4中可以看出,添加稀 土后柱状晶区缩短,等轴晶区扩大,这是由于高锰钢 中的残留稀土量超过一定数值后,会在凝固的胞晶前 沿富集,减小了胞晶在凝固方向的生长速度,使柱状 晶区缩短,等轴晶区扩大,由于稀土Ce形成的化合物

图2 1号钢不同位置金相 Fig. 2 Metallography at different positions of No.1 steel

图3 2号试验钢不同位置金相 Fig. 3 Metallography of experiment steel No. 2 at different positions

Fig. 4 Equiaxed grain secondary dendrite spacing before and after modification of experimental steel

粒子的非均质形核及钉扎,能够细化凝固组织,且固 溶Ce引起的成分过冷引发枝晶熔断进而促进枝晶间距 缩小。稀土元素在一次枝晶之间富集引起的成分过冷 抑制了二次枝晶向液相的发展,对细化二次枝晶间距 做出了一定贡献,使二次枝晶间距减小。稀土加入高 锰钢中形成高熔点的氧化物及氧硫化物两大类型非金 属夹杂,这些夹杂与奥氏体的错配度非常低,在钢液 凝固前析出,呈细小的质点分布在钢液中作为结晶时 的异质晶核,可以细化高锰钢的凝固组织,减少偏 析^[11]。同时稀土为表面活性元素,在结晶过程中,通 过在液-固两相界面上富集,从而阻碍了原子的扩散并 且阻碍固相从液相中获得相应的原子,实现抑制柱状 晶的长大、细化等轴晶粒的效果,因此对力学性能产 生明显的影响。

从图5中能够看出添加稀土后能够细化高锰钢晶界 共晶碳化物,减少共晶碳化物的数量。为进一步分析 晶界碳化物的成分对,图5b中的点1及图5d中的点4进 行能谱分析,如表2所示,主要为Fe、Mn、C等元素, 结合图6中的XRD分析,确认碳化物为M₂C₃及M₅C₂。 稀土(La/Ce)元素原子半径与铁原子半径相差较大, 加入钢液中稀土除与氧、硫等反应形成夹杂物外,还 有少量的会在钢中晶界、位错等晶体缺陷处固溶起到 微合金化作用^[12]。稀土加入钢液后优先进行脱氧脱硫 反应,当钢液中O、S含量足够低时加入的Ce开始大 量固溶,并在超过最大固溶量后沿晶界析出金属间化 合物^[13]。说明相同稀土含量下固溶度随O、S含量增高 而降低,降低S、O含量有助于发挥稀土的固溶作用。 尽管稀土在钢中固溶量非常低,钟雪友等^[14]试验中发 现,当高锰钢钢中稀土含量较高时,由于较低的平衡 分配系数导致其大量富集在枝晶前沿液相中,限制了 枝晶界面处的溶质扩散,阻碍枝晶粗化,同时偏析引 发的成分过冷造成枝晶熔断,游离枝晶有助于过热耗 散且可能作为新晶粒的形核核心。由于稀土不能与奥 氏体形成置换固溶体及间隙固溶体,只能在晶界空穴 等缺陷中赋存,因此富集在晶界的稀土降低了晶界的 界面能,导致碳化物在晶界处的形核较困难。同时在 晶界上富集的稀土,填充了晶界空穴等缺陷,阻碍了 原子借晶界空穴进行跃迁式扩散,阻碍碳化物沿晶界 长大。其次,稀土加入后能减少铸态晶界碳化物的数 量,抑制碳化物在晶界形成连续网状,减少并消除针 片状碳化物在晶内出现^[9]。

/%

656 **再造** FOUNDRY 铸钢 · 铸铁

(a)1号钢低倍

(b)1号钢高倍

(c)2号钢低倍

图5 1号和2号钢取样位置2的SEM形貌

Fig. 5 SEM morphology of sampling position 2 for steel 1 and 2

表2 取秤位直2各点的EDS分析结果 Table 2 EDS analysis results of each point at sampling location 2										
	Fe	Mn	Si	С	Al	Cr	La	Ce	0	S
	71.41	14.28	0.21	13.33	0.35	0.43				
	79.41	12.03	0.29	7.40	0.47	0.40				

1	71.41	14.28	0.21	13.33	0.35	0.43				
2	79.41	12.03	0.29	7.40	0.47	0.40				
3	22.76	4.34		10.08			27.77	21.28	7.58	6.18
4	72.31	14.12	0.21	12.52	0.38	0.46				
5	78.89	12.42	0.36	7.51	0.44	0.38				

2.2 夹杂物分析

位置

图7为2种试验钢试样中的夹杂物形貌及分布。可 以看出,添加稀土后,钢中夹杂物的数量减少尺寸减 小。从每个试样中选取100个视场对钢中夹杂物的尺寸 和分布进行统计,结果如表3所示。可以看出,1号试 验钢中小于4 µm²占比较少,10~50 µm²占比较多,存在 少量大于100 μm²的大颗粒夹杂物。添加稀土的2号试验 钢中面积小于4 μm²的夹杂物所占的比例明显增加,大 于4 μm²夹杂物的比例下降,特别是大于100 μm²的大颗 粒夹杂物完全消失,夹杂物尺寸相对分布较均匀。

图8及图9为1号试验钢中夹杂物的SEM形貌及能 谱,未添加稀土的高锰钢,夹杂物主要为TiN及Al₂O₃-MnS复合夹杂,图8中呈现出典型的TiN夹杂,其形貌 为规则的多边形,尺寸约为3 µm。图9是以Al₂O₃与MnS 的复合夹杂,尺寸约10 µm,通过面扫描分析可知, 夹杂外围为MnS夹杂,中心为Al₂O₃,可以认为Al₂O₃ 是MnS异质形核核心,钢液凝固过程中,以Al₂O₃为核 心,生成和长大,最后形成内含Al₂O₃核心的粗大MnS 夹杂。加入稀土Ce之后,钢中的夹杂物主要为稀土氧 化物、稀土氧硫化物及稀土与TiN共存的夹杂,如图10 及图11所示。从图10夹杂物的SEM形貌及能谱可以看 出该夹杂物为稀土氧化物夹杂,成球形,尺寸3~5 µm, 无明显的棱角。从图11中可以看出,在Ti和N分布的 区域同时有稀土,该类夹杂的形貌未发生明显变化与

图7 1号和2号钢夹杂物的金相照片 Fig.7 Metallographic photos of inclusions in No.1 and No.2 steel

表3 两种试验钢中不同面积的夹杂物占比 Table 3 Proportion of inclusions with different areas in two experimental steels

%

钢种	$\leq 2 \ \mu m^2$	$2\sim4 \ \mu m^2$	$4 \sim 10 \ \mu m^2$	$10 \sim 50 \ \mu m^2$	$50\sim100\ \mu\text{m}^2$	$\geq 100 \ \mu m^2$	
1号试验钢	5	10	25	30	15	15	
2号试验钢	32	28	20	10	10	0	

图8 1号钢中TiN夹杂物形貌及能谱

Fig. 8 Morphology and energy spectrum of TiNinclusions in No.1 steel

图9 1号钢中MnS-Al₂O₃夹杂物形貌及面扫

Fig. 9 Morphology and surface scanning of MnS-Al₂O₃ inclusion in No.1 steel

TiN极为相似,刘香军^[15]利用第一性原理计算方法辨别 Ce能够固溶在TiN夹杂物中,Ce掺杂后TiN的刚性、不可压缩性以及硬度都降低了,但韧性得到了很好的改善。固溶态Ce可将硬脆性的TiN夹杂物改变为韧性夹杂物,从而提高钢材力学性能。稀土改变了夹杂物尺寸、形貌、成分,改善了在外力作用下夹杂物棱角处 引起的应力集中现象,可大大降低非金属夹杂对高锰 钢的有害作用。

2.3 试验钢性能分析

从图12中可以看出,添加稀土改善了铸态高锰钢的冲击韧性,在0℃、-20℃、-40℃试验条件下,添

658 **持造** FOUNDRY 铸钢 · 铸铁

图10 2号钢中稀土氧化物 Fig. 10 Rare earth oxides in No. 2 steel

图11 2号钢中稀土复合夹杂物 Fig. 11 Rare earth composite inclusions in No. 2 steel

图12 2种试验钢横向冲击韧性 Fig. 12 Transverse impact toughness of two experimental steels

加稀土高锰钢的横向冲击功分别提升32.3%、67.5%, 170.0%,其中低温韧性提升更加显著。其主要原因 为稀土改善了非金属夹杂物的形状、大小、数量和分 布。与TiN、Al₂O₃和MnS夹杂物相比,稀土氧化物及 稀土氧硫化物的弹性模量、线膨胀系数与钢基体更 接近,这些小尺寸的球状夹杂物与钢基体具有很好的 适配性,减小了产生的应力集中。即使在后期的热加 工过程中,稀土氧硫化物仍会保持其良好的形态及分 布,避免了钢材热加工冷却过程中在夹杂物四周产生 的附加应力,提高了晶界抵抗裂纹形成与扩展的能 力,从而提高高锰钢的韧性^[16]。

从表4中可以看出,添加稀土后的2号试验钢HV10 为238,相比未添加稀土的1号试验钢增加17。这是由 于添加稀土后试验钢的柱状晶区缩短,等轴晶区扩 大,二次枝晶间距减小,晶界网状碳化物的分布改善。

表4 2种试验钢显微硬度(HV10)测试 Table 4 Microhardness (HV10) testing of two experimental steels

钢种	测试1	测试2	测试3	平均值
1号试验钢	224	222	218	221
2号试验钢	238	237	239	238

3 结论

(1)高锰钢中添加混合稀土La-Ce后,对铸态组 织有明显影响,使柱状晶区缩短,等轴晶区扩大,二 次枝晶间距减小,同时细化晶界碳化物。

(2)混合稀土La-Ce能够有效改善铸造高锰钢中 夹杂物的形态与分布,减小在外力作用下夹杂物棱角 处引起的应力集中现象,大大降低了非金属夹杂对高 锰钢的有害作用。

(3)加入混合稀土改善了铸态高锰钢的冲击韧 性及显微硬度,0℃、-20℃、-40℃试验条件下,添 加稀土高锰钢的横向冲击功分别提升32.3%、67.5%, 170.0%,其中低温韧性提升更加显著;显微硬度HV10 由221提升至238。

参考文献:

[1] 廖畅,李卫,刘晋珲,等. 钨对高锰钢显微组织和冲击韧性的影响 [J]. 铸造, 2011, 60 (4): 390-392.
[2] 魏世忠,徐流杰.钢铁耐磨材料研究进展 [J]. 金属学报, 2020, 56 (4): 523-538.
[3] 刘燕平,杨清,朱福生,等. 钇稀土复合多元合金变质包芯线在高锰钢中的应用研究 [J]. 铸造, 2021, 70 (3): 361-368.
[4] 傅排先,康秀红,夏立军,等. 微合金化对厚断面高锰钢铸件中夹杂物形成的影响 [J]. 铸造, 2010, 59 (12): 1337-1340.
[5] 黄宇,成国光,谢有.稀土Ce对针具钢中夹杂物的改质机理研究 [J]. 金属学报, 2018, 54 (9): 1253-1261.
[6] 靳晓艳,计云萍,侯敬超,等.稀土对204mCrNi2Mo耐磨铸钢组织及力学性能的影响 [J]. 铸造, 2015, 64 (4): 303-306.
[7] 杨晓红,吴鹏飞,吴铖川,等.特殊钢中稀土变质夹杂物行为研究 [J]. 中国稀土学报, 2010, 28 (5): 612-618.
[8] 李根, 陆民刚,兰鹏,等.稀土Ce改善钢铸态组织与均质性的研究进展 [J].钢铁研究学报, 2018, 30 (2): 79-90.
[9] 郑开宏,赵四勇,林怀涛,等.稀土元素在高锰钢中的作用 [J]. 热加工工艺, 2002 (1): 49-50.
[10] 霍文霞,任慧平,金自力,等.不同稀土加入量对高锰钢组织及力学性能的影响 [J]. 热加工工艺, 2012, 41 (7): 15-17.
[11] 王龙妹.稀土元素在新一代高强韧钢中的作用和应用前景 [J].中国稀土学报, 2004 (1): 48-54.
[12] 计云萍,刘宗昌,王海燕,等.钢中固溶稀土对过冷奥氏体转变的影响 [J]. 热加工工艺, 2015, 44 (24): 113-115.
[13] 林勤,叶文.钢中稀土固溶规律及作用研究 [J].中国稀土学报, 1989, 7 (2): 54-58.
[14] 胡汉起,钟雪友,力航.铈对高锰钢奥氏体胞晶稳定性及锰的枝晶偏析的影响 [J].北京钢铁学院学报, 1983, 11 (1): 64-84.
[15] 刘香军.稀土Ce在钢中的赋存状态及对钢力学性能和腐蚀性能的影响机理研究 [D].包头:内蒙古科技大学, 2021.

[16] 李豪. 微量Ce对EH36船板钢夹杂物、组织和耐腐蚀性能的影响 [D]. 太原:太原理工大学,2017.

Effect of Mixed Rare Earth La, Ce on the Microstructure and Inclusion Modification of Cast High Manganese Steel

SHI Shuai^{1, 2}, ZHAO Yan-qing^{1, 2}, GAO Yun-zhe^{1, 2}, WANG Jiao-jiao^{1, 2}, WU Xiao-long^{1, 2}, GONG Jun-jie^{1, 2}, ZHAO Lin-lin^{1, 2}, GUO Rui-hua^{1, 2}, ZHAO Nan^{1, 2}

(1. Material Technology Research Institute of HBIS Group, Shijiazhuang 050023, Hebei, China; 2.Hebei HBIS Material Technology Research Institute Co., Ltd., Shijiazhuang 050023, Hebei, China)

Abstract:

The effect of La-Ce mixed rare earth elements on the microstructure, inclusions, and mechanical properties of cast high manganese steel was studied by using trace rare earth La-Ce microalloyed high manganese cast steel for modification treatment, and detection methods such as metallographic microscope, scanning electron microscope, energy dispersive spectrometer, impact testing machine, and microhardness tester. The results show that a trace amount of rare earth La-Ce shortens the columnar crystal zone, expands the equiaxed crystal zone, reduces the secondary dendrite spacing, and refines the grain boundary carbides in the as-cast structure of high manganese steel. At the same time, the inclusions in the steel undergo denaturation, transforming from polygonal TiN, Al₂O₃, and MnS composite inclusions into ellipsoidal or spherical rare earth containing composite inclusions. Rare earth La-Ce improves the impact toughness and microhardness of as cast high manganese steel. The transverse impact energy increases by 32.3%, 67.5%, and 170.0% respectively at 0 $^{\circ}$ C , -20 $^{\circ}$ C , and -40 $^{\circ}$ test temperatures, and the low-temperature toughness improvement is more significant. The microhardness HV10 has been increased from 221 to 238.

Key words:

high manganese steel; rare earth; inclusions; impact energy